Parallel Hybrid Iterative/Direct Solution
Methods

Robert D. Ferraro
Jet Propulsion Laboratory
Cdifornia Ingtitute of Technology

1. Introduction ,

In solving finite element problems, the differential equation is ultimately reduced
to a set of linear equations which must be solved by some method. Various different
approaches can be used to sofve this lincar equation set. In some instances, an explicit
method is used to advance the differential equation in time and thus the solution of the
linear equation set is accomplished automatically in the process. In most cases,
however, a matrix of coefficients must actually be formulated and some numerical

method employed to obtain onc or more solutions to this equation set.

There arc generally two broad categories of methods for solving linear equations:
direct methods and iterative methods. Direct methods typically involve the
factorization of a matrix into some combination of upper and lower triangular matrixes
which may be easil y used in backsolving with the right hand side to obtain the
solution. Once the factorization is accomplished, little additional effort is required to
solve problems which differ from the origina only in the right hand side (which
usually represents the boundary conditions or driving function). Direct methods,
depending on the sparsity of the linear system, involve operation counts which scale

approximatel y as order nb?, where n is the number of degrees of freedom, and b is

the average bandwidth of the sparse matrix. Although various numbering techniques
may be used to minimize the bandwidth of sparse matrixes, the fact that the problem
stems from afinite element formulation implies that general geometric considerations
will couple the bandwidth to the number of degrees of freedom and the dimensionality
of the problem, so that b is on the order of square root of » for two dimensiona

problems, and the two-thirds power of ain threc dimensional problems.

Iterative methods, on the other hand, typically involve sparse matrix-vector
multiplies and the construction of orthogonal vectors to decide on new search
directions at each iteration step. The sparse matrix-vector multiply can be computed
in order nf operations, where n is the number of degrees of freedom, and f isthe
average number of non-zero coefficients in each equation. For finite element
formulations, fisanumber which depends on the type and degree of finite elements
employed, and is independent of the size of the problem. Obtaining a solution to the.
lincar equations set involves repeated matrix-vector multiply operations uvntil some
convergence criterion is satisfied. * [bis typically involves something less than order #

operations, thus the iterative methods have somewhat of an advantage in terms of

operation count compared to direct methods when dealing with very large systems.

More importantly, in current parallel supercomputing environments, locality of
memory access is the most important consideration in the design of any method for
solving linears ystems. In every parallel supercomputer available, the programmer
must pay a price for accessing memory which is not local to a processor. The largest
scalable parallel computers today (such as the IBM SP-2, Intel Paragon, Cray T3D,
SGI POWER CHALLENGEarray, and Convex Exemplar) have processors with local

memory interconnected through some fast network hierarchy. Though some

distributed memory systems, like the Cray T3D and Convex Exemplar SPP, alow the
user a shared memory programming model, efficiency considerations require the user
to manage the locality of data access, since referencing data which is not in the
processor’s local memory is aways a significant cost operation. Thus in designing
parallel algorithms. special attention must always be given to arranging data in
memory to minimize the number of remote memory accesses across the
interconnection network, or at least organizes them into block references which can be
fetched efficiently. This usually leads to algorithms which operate on localized blocks
of data rather than striding uniforraly or randomly through memory. Parallel
agorithms for direct and iterative methods have been published in many places in the
last fow years, i.e. Fox, et. a. (1988, 1994), and Barrett, et. al. (1993). Paralel
computer manufacturers usuall y provide some type of paralel factorization and
parallel iterative method in library form which maybe employed in solving finite
clement problems. Although direct methods are typically more stable than iterative
methods, for large problem sizes, their operation counts and parallel scaing arc such
that they arc not feasible for usc in solving very large problems. As tens of millions of
finite elements become used in electromagnetics problems, it will become imperative

to apply an iterative method to obtain any solution whatsoever.

A wide variety of iterative methods have been employed to solve finite element
problems. The most popular among these are the Krylov subspace orthogonalization
methods upon which conjugate gradient and its variations are based. Explicit
orthogonal ization methods such as GMRES are also very popular and robust, but
require substantially higher operation counts to achieve convergence. Thisis due to

the fact that the latter method explicitly constructs orthogonal scarch directions based

on some number of previously saved iterations. This process becomes more expensive
with every new iteration, and thus is typically carried only for a limited number of
steps before some restart agorithm is used. An excellent discussion of some of the
theory and all of the issues associated with iterative methods maybe found in Barrett,

et. al. (1993) and references contained therein, and will not be repeated here.

In this chapter, a novel combination of direct and iterative methods will be
considered which can be employed successfull y in solving finite element problems.
This combination, referred to here as hybrid methods, originated from the observation
that a parallel decomposition of a finite clement mesh resulted in some, number of sub-
problems which could be viewed as independent finite element problems and which
could be solved in parallel without communication. The bandwidth of each of time
problems was substantially smaller than the bandwidth of the total linear system and
thus direct methods could be efficient! y employed on these sub-problems when it was

not feasible to do soon the globa problem.

In parallelizing afinite element method, consideration must be given not only to
the parallel linear equations solution method, but also to the parallel assembly of the
coefficient matrix of the linear system, and the boundary conditions or excitation terms
which congtitute the right hand side of the linear system. Since finite elements arc
geometric objects with geometric connectivity and spatial relationships, the sparsity
pattern of the coefficient matrix mimics the spatial pattern and connectivity of the
finite elements from which the matrix is constructed. The parallel partitioning of the
finite clement mesh maybe used directly to construct a decomposed sparse coefficient
matrix for use by iterative methods, since the matrix-vector multiplies can be done in

parallel without regard to the order in which the operations are carried out.

pcrformcd’at all times in order to achieve the highest efficiency. Thus besides data
decomposition, load balance is a critical consideration in any parallel algorithm. For
conjugate gradient algorithms, the mgjority of work is in the matrix-vector product
and since that work is directly proportional to the number of nonzero entries in the
matrix, aload balanced implementation corresponds to a uniform distribution of the
nonzero Matrix elements across processors. Attention should also be paid to the work
involved in computing the vector-vector inner products, but this work is usually small

compared to the matrix-vector multiply.

The basic conjugate gradient algorithm for linear systems which r'ésu}t in
symmetric positive definite matrices is given in Fig, 1. This algorithm is intended to

solve the linear system

Ax =D 1)
Here, and in Fig. 1, A is a symmetric positive definite matrix corresponding to the

cocfficients of the linear system and b is the right-hand side vector. In the conjugate
gradient algorithm of Fig. 1,x(i) is the solution at each itcration step, r' is the residual
vector at each iteration step, and aand p arc scaling coefficients which are used to
determine the ncw conjugate search directions p® and q(i). hisalgorithm involves
one matrix-vector product, two vector inner products, and three vector scale & add
operations (S AXPYs) in the inner loop. The theory behind conjugate gradient
agorithms can be found in many places, and will not be discussed here. Instead this
section focuses on the issues of designing an efficient parallel implementation for

conjugate gradient algorithms and their variations.

Parallelism in conjugate gradient algorithms essentially comes fi om parallelism

in the matrix-vector multiply, the inner products, and the SAXPYS. The remainder of

the operations involved in the conjugate gradient algorithm in Fig. 1 are trivia
compared to these. In the main loop of the agorithm the sequence of operations to be
performed is fixed by the algorithm itself. However, certain operations can proceed in
paralel since there arc no dependencics. In particular, the update of the. residua vector
and the solution vector do not depend on each other, and could be per formed in
parallel. Neither of these parallel operations can proceed before the nlatrix-vector
product is completed and the scaling coefficient ais computed from its result.
Likewise, the matrix-vector product of the next iteration may not proceed until the
residual vector has been updated. Thus there are two points at which all processors
must synchronize before they may proceed further with the algorithm. It is important
that the work load remain balanced between synchronization points so that all
processors participate in al of the computation that needs to take place and that none
go idle during that period. Therefore the parallel implementation of the matrix-vector
product should be tailored to the details of the matrix itself so that it achievesits
maximum parallel efficicncy and the work for the vector inner products and SAXPY S
be equally divided among processors. Note that this requirement does not necessarily
impose arigid constraint on how the matrix and vectors are decomposed in parallel.
Any decomposition which achieves these goals will alow a parallel conjugate

gradient algorithm to perform well.

In exact arithmetic, the conjugate gradient algorithm applied to a set of linear
equations converges to the solution uniformly (in some norm) and in » iterations. The
residual error is generally reduced at each iteration so that the solution comes closer
and closer to the exact solution with each iteration step. Thus when only finite {

precision is required of the answcr,/conjugatc gradient may arrive at a sufficiently

good solution much earlier than the » iterations required for exact convergence. This
means that in practice, conjugate gradient algorithms converge in less than order
operations. When problem sizes arc large, conjugate gradient is very atractive
compared to direct factorization methods. (The Reader is reminded that the uniform
convergence property of the conjugate gradicnt algorithm is applicable only to
positive definite Symmetric linear systems. The variants of conjugate gradient for
other types of linear systems do not, in gencrat, have such convergence properties.
However, the reduction of the residual error to some stopping criteria generall y
produces a uniform error solution, so that less than order nt operations are the norm

for conjugate gradient and al of its variations.)

The basic conjugate gradient algorithm, however, is aimost never used because
large linear systems often have poor condition numbers. Finite precision arithmetic in
combination with poor conditioning causes convergence to be slow, or can prevent
convergence atogether. Methods have been developed to improve the conditioning of
the problem, and speed the rate at which the conjugate grad ient iterations achieve the
required precision. These methods, known as preconditioners, essentialy transform
the linear equation set into a ncw set of equations which are better suited to solution
by conjugate gradient methods. Written formally, a preconditioned M = M;M, takes

the linear system in eqn. (1) and transforms it by

M; 'AM Y (M;x) = (M;'b))

into

Ax =D 3)
Writing M as the product of a left preconditioner M1 and a right preconditioner M,

allows the properties of eqn. (1) to be preserved in eqa. (3), provided that MI, M,, and
thus M, arc appropriately chosen. For example, if A in eqn. (1) is symmetric and

positive definite, and M, = MY, then A’ will also be symmetric and positive definite.

An cffective preconditioner essentially transforms the matrix into another matrix
which is closer to the identity than the original. The ideal preconditioned is in fact the
matrix inverse itselfl However, the cost of computing the inverse is the cost of solving
the problem in the first place. A detailed discussion of preconditioning is also beyond
the scope of this chapter. Preconditioning is an art rather than a science, and the made.r

isreferred again to Barrett, et. al. (1993) for a variety of methods in common usc.

In Fig. 2, the conjugate gradient algorithm has been modified to include the
application of a symmetric positive definite pre.conditioner, which is represented by
solving the linear system M z = r. The preconditioner is almost never applied directly
to the matrix, because that would destroy the sparsity characteristics of the matrix, and
thus the advantages of sparse vector matrix multiply. Rather, the algorithm is modified
to include a linear system solve at each iteration. The preconditioner has presumably
been chosen so that the linear system solve can be accomplished quickly! However,
the application of a preconditioner to a decomposed linear system on a parallel
processor proves to be a serious complication to the efficiency of paralel conjugate
gradient. The linear equation solve that represents the application of the
preconditioner can be as complicated to implement in paralel as any of the direct
factorization methods themselves or it may require a high setup cost to construct in the
first place. Unless the preconditioner chosen has data decomposition characteristics
which match the matrix decomposition characteristics, the efficiency of the conjugate

gradient multiply can be ruined by the inefficiency of applying the preconditioner. A

inefficient preconditioner, or onc which is expensive to construct in a parallel
environment can more than cancel the benefit of a reduced iteration count that it was
meant to provide. So particular care must be taken in choosing a preconditioner in a

parallel implementation.

The basic conjugate gradient algorithm discussed above is useful only for
positive-definite linear systems, but there area variety of extensions and variations of
this algorithm which can be applied to linear systems with other problems. Bi-
conjugate gradient, for example, can be used for complex systems, quasi-minimum
residual (QMR) method, for complex symmetric systems, and conjugate gradient
squared, and bi-conjugate gradicnt stabilized for complex indefinite systems. Each of
these variations involves a different method of computing the search directions, but
the basic operations remain the same: matrix-vector products, vector inner products,
SAXPY S, and some preconditioning scheme which is applied at each iteration step.
Thus paralel cfficiency for any of these methods will be achieved by efficient parallel
implementation of these core operations. Ignoring the preconditionc, the parallel
scaling for the conjugate gradient algorithm is the same as the scaling for parallel
matrix multiply. Very high efficiency can be achieved by careful attention to

minimizing the communications involved in these operations.

The introduction of a preconditioner can destroy this scaling property, Thus even
though the number of iterations to achieving the solution is substantially reduced by
the usc of a preconditioner, the total execution time may actualy rises if the paralle
efficiency for the application of the preconditioner itself is poor. In some situations, it
isin fact better to usc a very simple preconditioner like diagonal scaling (Jacobi

preconditioning) which has excellent parallelization properties than it isto usc a

10

‘sophigticate preconditioner like incomplete Cholesky factorization, Even though the
iteration count is higher with diagonal scaling, the execution time to solution may be

as good as or better than the more sophisticated method,

3. Hybrid direct-conjugate gradient algorithms

The implementation of finite element methods for parallel computers provide an
opportunity to employ a unique method of combining direct and iterative linear
equation solvers which, when taken together, enjoy better parallel scaling and
convergence than either aone. The typical implementation of a finite clement method
uses a domain decomposition which splits the finite element mesh into compact
submeshes SO that each processor has (approximately) an equal portion of the entire
problem. From the individual processor's viewpoint, it has a complete finite element
problem. Thus one can employ a direct method to solve the finite element subproblem
without regard to the meshes which arc being processed on other processors. Consider
the cxamplc/: two-dimensional finite €lement mesh shown in Fig. 3. In this example, the
mesh has been partitioned among four processors, such that elements in the mesh
reside in onc and only onc processor. The boundaries between partitions lie along
clement edges or faces, so that nodal points (and degrees of freedom corresponding to
those points) serve as a dividing line between processors. Taken individually, each
processor has a partition which is a finite element problem unto itself with boundary
conditions that arc dcpendent on the results obtained in other processors. In Fig. 3 the
nodal points interior to a partition arc represented by filled circles and nodal points
lying on partition boundaries arc denoted by open circles. Were it not for the fact that
the values on the partition boundaries are coupled to results in neighboring processors,

a standard sequentia finite elements method could be used without modification to

1

solve the interior problem,

The elements in this simple example belong uniquely to asingle partition. In a
standard sequential finite element formulation, each element contributes additively to

the global stiffness matrix K and force vector f [see Hughes (1987), ¢.g.] as follows:
K =3k® (43)
3

f = Z{m (b)
e

Here K®and s arc the contributions of a single element to the global tiffness
matrix and global force vector respectively, and the. summation is over dl elements in
the mesh. In a partitioned mesh such as shown in Fig. 3, the contributions of al the
elements may be computed in an embarrassingly parallel fashion (i .e., without
interprocessor communication), since each partition is assigned to its own processor.
The stiffness matrix K ‘”which corresponds to a partition contribution is computed
on its processor using eqn. (4a) for the elements contained in the partition, and the

global stiffness matrix may be recovered (if necessary) by summing over processors p:

K = ZK(P) (5)
P

The force vector f is computed similarly using eqn. (4b) on each processor, but the.
results must be summed across all processors p so that the values at the shared nodes

correctly include contributions from elements in different partitions,

For iterative methods which require only matrix-vector products and inner
products, it is not necessary to recover the global stiffness matrix. These methods only

require the result of the matrix-vector product, which can be computed in parallel

12

directly from the individual partition stiffness matrices K*)

Kx = Z(K(P)x(l’)) (6)
P
Here X ‘"is the portion of a global vector which corresponds to the unknowns in

partition p. The vector X *”

will contain entries for shared nodes on partition
boundaries which arc duplicated in more than one processor. In partition A in Fig. 4,
for example, X ““would consist of the unknowns associated with the interior nodes
of the partition and the shared nodes labeled a, b, and e, but no others. The matrix-
vector multiply of eqn. (6) will automatically produce the correct results in parallel for
interior nodes. The summation of egn. (6) must be performed only for the shared
nodes, i.e., the shared nodes have contributions from elements in multiple partitions

which must be summed together to obtain the correct result.

This observation leads to the possibility of using standard sequential direct
factorization methods to remove the degrees of freedom interior to the partitions
entirely from the problem, leaving only the shared nodal points on partition
boundaries to be solved in parallel. This idea can be represented formally by writing
out the linear equation set which corresponds to the finite element problem in the
following manner, First, the degrees of frecdom attached to partition interior nodal
points arc numbered in order by partition, followed by the degrees of freedom which
arc attached to the partition boundary nodes. For edge clement problems, degrees of
freedom arc associated with edges instead of nodes, but the same numbering
methodology applies. The global matrix which corresponds to the partitioned finiie
element problem can now be seen to consist of a set of matrix blocks which correspond

to the coupling of interior points of each partition, the coupling terms between the

13

interior points and the boundary points in each partition, and finally the entries
corresponding to coupling among the boundary points themselves as represented
pictoridly in Fig. 4 for the partitioned mesh shown in Fig. 3. Returning to the usua

linear algebra notation of eqn. (1), this linear system can be written as

Ay AglIx| _ (s o
Asi Ass Xs bs

where A, arc the blocks which result from pairs of interior nodes, A,, arc the blocks
which result from interior node/shared node pairs, and A, isthe block which results
from pairs of shared nodes. Note that the large blocks of partition interior nodes in this
matrix arc coupled to each other only through shared nodes and thus maybe formal] y
removed from the problem by simple algebra, The upper equation in egn. (7) maybe
solved for xi to obtain

X, - A5 (b—Aux,) &)
Here it is understood that A is a shorthand notation for a factorization of A,.
Introducing this expression for xi into the lower equation of egn. (7) results in a

reduced lincar equation set consisting only of shared partition boundary points:

-1 -1
(Ass— AsiAii Ais) xs = (bs—AsiAii bi) (9)
or
Ax, = b, (10)
where
Ar = (Ass'_AsiAi—ilAis) (ha)
14

— -1
The process of eliminating the interior points couples every shared point on every

partitioned boundary with every other shared point.

It is a consequence of eqn. (5), which is a property of the finite element method,
that cgn. (1 13) partitions completely and independently among processors. Each of the
matrix blocksin eqn. (1 1a) "{unjx out to be themselves partitioned among Processors so

that

-1
AP = AD AP APy AP (12)

and

A, =Y AP (13)
P

Each of these reduced matrices A ¥ arc dense matrices. It should be noted that

eqn. (8) may also be computed independently in each partition for that partition’s
interior nodes, and thus may be done in paralel without communication, The reduced
matrices could be recombined across all processors, and redistributed for a parallel
factorization step, but the. decomposition method allows these matrices to be used
directly by an iterative scheme, e.g., a conjugate gradient method, to complete the
solution of eqn. (10) for the shared nodes. Note that the solution obtained for the
reduced equations is exactly the desired vaues for the degrees of freedom on the
shared nodes. To obtain the solution values on the interior nodes is a smple matter of
applying eqn. (8) to the solution for the shared nodes. The factorization allow for
forward and back substitution in parallel on each processor without communication.

Additionally, for smple changes in global boundary conditions, the factorizations of

15

the interior node matrix blocks may be retained so that multiple right-hand sides may

be done successively in an efficient manner.

This method produces reduced matrices whose characteristics are the same as
those of the global matrix from which it was derived, i.e., if the global matrix is
symmetric, the reduced matrix is aso symmetric; if the global matiix is Hermitian,
then the reduced matrix is Hermitian, Thus, any of the standard iterative methods can
be used to solve the reduced equation set since the matrix vector multiplies arc the
fundamental operations and each conjugate gradient method differs only in how the
results arc combined to form ncw scarch directions. Addi tionatly, for poorly
conditioned problems, the application of a direct factorization method with pivoting
can improve the conditioning of the system and alow the conjugate gradient algorithm
to converge on the reduced equations when it would not have converged on the global

system.

In constructing the software to implement this method, the essential
considerations arc the numbering of the unknowns locally within each processor, so
that the matrix structure naturaly fals into the form shown in Fig. 4. The algorithm
for this hybrid method is presented in Fig. 5. The segregation into the interior and
shared node blocks allows sequential algorithms for the computation of Ai“i‘
(factorization) to be applied unchanged, Many are available, see for example, Press,
et. al. The application of cqn. (12) maybe done using standard library routines like the
BLAS of Lawson, ct. a. (1 979) or, if special storage methods are used, can be written
simply as matrix vector multiplies. The final reduced matrix, which is essentialy
dense, may be used with a BLAS SEGMYV routine which is typically available on all

parallel platforms, and optimized for its architecture. Thus the only communications

16

required is a global summation of vectors at the end of each call to SEGMV.

Since the iterative part of this method is applied only to the unknowns which
reside on partition boundaries, this method has scaling properties which arc better than
an iterative method applied to the original problem. The operation count for conjugate
gradient on the global finite element problem scales as order #? where n is the number
of degrees of frecdom. In this method, the number of unknowns on the partition
boundary goes as n 12 for two-D problems or » 23 for 3-1> problems, so that the
iterative portion of the solver converges in either order n operationsin 2-D or order
n*? in 3-D. The remainder of the operations involved in the method scale as the
number of interior points. As problem size grows with the number of processors, this
work load is a constant independent of problem size. Thus if wc compare the
implementation of a conjugate gradient method with diagonal preconditioning to this
hybrid method, we see that the hybrid method outperforms the conjugate gradient

method after only a small number of processors.

In Fig. 6 the scaling behavior of each of these methods is plotted versus number
of processors for a series of scaled problems with 1600 grid points per processor. That
isto say, a base problem consisting of 1600 unknowns was solved on a single
processor, and scaled problems consisting of 1600p unknowns were solved for p = 2,
4,8, 16, .,.The data shown is the ratio of execution time for solution of each of these
problems normalized to-the execution time for the 1600 grid problem on a single
processor. The bi-conjugate gradient method scales as p where p is the number of
processors while the hybrid method applied to the same problems scales
approximatel y as the square root of p. It is clear from the graph that for large problem

sizes on large numbers of processors, the hybrid method is the clear winner.

17

Although the results presented here are for a Cholesk Y factorization of the interior
degrees of freedom followed by a conjugate gradient solution of the shared degrees of
freedom, it is expected that this scaling behavior will carry over to any appropriate
combination of direct and iterative method. The direct method is a constant cost, while
the iterative method operates on a problem size which is reduced fi om the original by
the surface to volume ratio (since the shared nodes arc the surfaces of a partitioned
volume). Although this method is most easily understood in terms of and applied to
paralle finite clement problems, it relics only on the assumption that the linear
equations set being solved represents some local coupling among unknowns (like that
typically arising from the solution of partial differential equations via finite difference,
finite element, or finite volume methods) and that a geometric compact partitioning of

the unknowns is possible.

4. Acknowledgments

Many people have contributed to the development of this idea (over several years
and projects) into a working software package. In particular, the author wishes to
acknowledge G.A. Lyzenga asthe originator of the idea a number of years ago at the
Jet Propulsion Laboratory, and thanks H.Ding for his contributions in extending the
software to finite difference problems and in measuring the methods sedling

properties.

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology under a contract with the National Aeronautics and Space Administration.
Rcference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory,

18

Cdifornia Ingtitute of Technology.

This research was performed in part using the Intel Touchstone Delta and Paragon
Systems operated by Caliech on behadf of the Concurrent Supercomputing
Consortium. Access to this facility was provided by thelet Propulsion Laboratory, and

NASA Office of Aeronautics.

5. Bibliography
Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongaria, J., Eijkhout,
V., Pozo, R., Romine, C., and van dcr Vorst, H. (1993). Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods. Philidelphia:SIAM. iv+92 pp.

R.Cook, and J. Sadecki, Sparse Matrix Vector Product on Distributed Memory
MIMD architectures, in Proceedings of 6th SIAM Conference on Parallel Processing
for Scientific Computing, 1993, p.429.

H.Q. Ding and R.D. Ferraro, Slices. A Scalable Partitioner for Finite Element
Meshes, in Procecdings of 7th SIAM Conference on Parallel Processing for Scientific

Computing, 1995.

1.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices,
Oxford University Press, London, 1986.

R.D.Ferraro, T.Cwik, NJacobi, P.C.Liewer, T.G.Lockhart, G.A.l yzenga,
J.Parker, and J.E.Patterson, Parallel Finite Elements Applied to the Electromagnetic
Scattering Problem in Proceedings of the Sth Distributed Memory Computing
Conference, Edited by D.W.Walker and Q.F.Stout, |[EEE Computer Society Press, Los
Alamitos, CA. (1990) p.417.

19

G.C. Fox, M.A. Johnson, G.A.Lyzenga, S.W. Otto, J.K. Salmon and D.W.
Walker, Solving Problems on Concurrent Processors, Vol. 1, Prentice tlan, Englewood

Cliffs, Ncw Jersey, 1988. Chap.7.

Fox, G.C, Williams, R, D., and Messina, P.C. (1994). Parallel Computing Works!

Morgan Kaufmann Publishers, Inc., San Francisco

M, T. Heath, and P. Raghavan, Performance of a Fully Parallel Sparse Solver, in
Proceedings of Scalable High Performance Computing Conference 1994, p.334, IEEE

Computer Socicty Press, Los Atamitos, CA.

Hughes, T, J. R. (1987). The Finite Element Method. Prentice-lial, Inc.,
Englewood Cliffs, New Jersey.

Jacobs, D.A.H. (181) ‘The exploitation of Sparsity of Iterative Methods'. In:

Sparse Matrices and their Uses, (1.S.Duff, editor). London: Academic Press

V. XKumar, A. Grama, A. Gupta and G. Karypis, Introduction 7 Paralle

Computing, Benjamin/Cummirlgs, Redwood City, CA, 1994. Chap.11.

Lawson, C., Hanson, R., Kincaid, D., andKroch,F.(1979). Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5, pp. 308-325.

G.A.Lyzenga, A. Raefsky and B. Nour-Omid, Implement Finite Element
Software on the Hypercube, Proceedings of 3rd Hypercube Conference, ACM Press,
New York (1988), p.1755.

Press, W. H., Flannery, B.P., Teukolsky, S. A., and Vetterling, W.T. (1986),

Numerical Recipes. Ncw York: Cambridge Universit y Press. pp. 31-37

20

p(® = r @ = po Ax®
pozr(O) w pO
while Il r Il not converged
i i
q() - Ap®
Pi-1
a = —_——
i i i
p() _q()
x® = x-D +°‘np(l)
MO CE)) o)]
i i
Py - N UON()
Py
ﬁl = —
Pi-1
p® = @ +B,p("|)
end while

Figure 1. The conjugate gradient algorithm for symmetric, positive definite linear

system S,

21

r® = b Ax®
solve Mz(® = r (O

Py 1@ 2O
P(O))
while i r’ll not converged
i |
q® = Ap®
o - Pi-1
LM,
pM q()
i i-1)]
x® = 50D g p®
r(|) l(i~1)_(xl o)

pl=lr(i) o)
P

B, = 5 1
i-1

i i i-1
p® = g + p pi-D

end while

Figure 2. The preconditioned conjugate gradient algorithm for symmetric,

positive definite linear systems.

22

Bia i)
o
L
o
DN
Boniion

AN

e [nterior Node
O Shared Node

rs

€SS0

Figure 3. A simple finite element mesh partitioned among four proc

Elements are uniquely assigned to partitions A, B, C, and D. Nodes on partition

boundaries a, b, c, d, and the center node € are assigned to maltipie partitions.

23

D

.__
O - @ terms
O - O terms RN

@® terms

Figure 4. The structure of matrix of cocfficients of the linear system which results

from the finite clement problem of Fig, 3. Unshaded areas arc zero values.

24

For each partition in parallel:
Factor Ai(ip)
-1
Compute A,(psf L—sé:f’) (Ai(ip)) Ai(sp)

-1
Compute b(P) = Ag” A b

Compute and distribute b, = bs—ZDI(p)
P

Solve (ZAI(”)) x, = b, using a parallel iterative solver
P
For each partition in parallel:

-1
Computex’ = (AY) (¥ - AP x,)

ii

Figure 5. The parallel hybrid algorithm. The factor and iterative solve steps must
be tailored to match the properties of the underlying linear system. For symmetric

systems, some additional algebraic recombiniations are possible.

25

40
o 30
ke
B
; 20 g
?5/ o
&
=
10
~—{f}—— Hybrd
o DPBCG
O " i 1 1 L 1 i 1 2
0 20 40 60 so 100 120 140

Number of Processors

Figure 6. Scaling characteristics of the hybrid method compared to a diagonally

preconditioned conjugate gradient method for the same problems.

26

